Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Classical T Tauri stars (CTTSs) are young, low-mass stars that accrete material from their surrounding protoplanetary disk. To better understand accretion variability, we conducted a multiepoch, multiwavelength photometric monitoring campaign of four CTTSs, TW Hya, RU Lup, BP Tau, and GM Aur, in 2021 and 2022, contemporaneous with Hubble Space Telescope UV and optical spectra. We find that all four targets display significant variability in their light curves, generally on days-long timescales (but in some cases year-to-year), often due to periodicity associated with stellar rotation and to stochastic accretion variability. There is a strong connection between mass accretion and photometric variability in all bands, but the relationship varies per target and epoch. Thus, photometry should be used with caution as a direct measure of accretion in CTTSs.more » « less
-
Abstract The classical T Tauri star (CTTS) stage is a critical phase of the star and planet formation process. In an effort to better understand the mass accretion processes, which can dictate future stellar evolution and planet formation, a multiepoch, multiwavelength photometric and spectroscopic monitoring campaign of four CTTSs (TW Hya, RU Lup, BP Tau, and GM Aur) was carried out in 2021 and 2022/2023 as part of the Outflows and Disks around Young Stars: Synergies for the Exploration of ULLYSES Spectra program. Here we focus on the Hubble Space Telescope (HST) UV spectra obtained by the HST Director’s Discretionary Time UV Legacy Library of Young Stars as Essential Standards (ULLYSES) program. Using accretion shock modeling, we find that all targets exhibit accretion variability, varying from short increases in accretion rate by up to a factor of 3 within 48 hr to longer decreases in accretion rate by a factor of 2.5 over the course of 1 yr. This is despite the generally consistent accretion morphology within each target. Additionally, we test empirical relationships between accretion rate and UV luminosity and find stark differences, showing that these relationships should not be used to estimate the accretion rate for an individual target. Our work reinforces that future multiepoch and simultaneous multiwavelength studies are critical in our understanding of the accretion process in low-mass star formation.more » « less
-
Abstract Classical T Tauri Stars (CTTSs) are highly variable stars that possess gas- and dust-rich disks from which planets form. Much of their variability is driven by mass accretion from the surrounding disk, a process that is still not entirely understood. A multiepoch optical spectral monitoring campaign of four CTTSs (TW Hya, RU Lup, BP Tau, and GM Aur) was conducted along with contemporaneous Hubble Space Telescope (HST) UV spectra and ground-based photometry in an effort to determine accretion characteristics and gauge variability in this sample. Using an accretion flow model, we find that the magnetospheric truncation radius varies between 2.5 and 5R⋆across all of our observations. There is also significant variability in all emission lines studied, particularly Hα, Hβ, and Hγ. Using previously established relationships between line luminosity and accretion, we find that, on average, most lines reproduce accretion rates consistent with accretion shock modeling of HST spectra to within 0.5 dex. Looking at individual contemporaneous observations, however, these relationships are less accurate, suggesting that variability trends differ from the trends of the population and that these empirical relationships should be used with caution in studies of variability.more » « less
An official website of the United States government
